INTRODUCTION

Fragile X syndrome (FXS) is a neurodevelopmental disorder caused by the loss of function of a single gene, the fragile X mental retardation 1 gene (FMR1) (Pieretti et al., 1991; Siomi et al., 1993; Verkerk et al., 1991). FXS is typically caused by a triplet repeat expansion in the 5′ UTR of the FMR1 gene, leading to abnormal methylation of the gene and the repression of transcription (Penagarikano et al., 2007; Pieretti et al., 1991; Sutcliffe et al., 1992; Verkerk et al., 1991). The absence of FMR1 gene expression results in intellectual disability and behavioral problems and is the leading cause for inherited mental retardation, with an average prevalence of ~1:2,500 in males and ~1:5,000 in females (Hagerman, 2008; Penagarikano et al., 2007). The altered expression of the FMR1 gene has also been linked to autism spectrum disorders, fragile-X-associated tremor/ataxia syndrome, and fragile-X-associated primary ovarian insufficiency (Kenneson and Warren, 2001; Penagarikano et al., 2007).

SUMMARY

Fragile X syndrome (FXS) is the most common form of inherited mental retardation, and it is caused by loss of function of the fragile X mental retardation protein (FMRP). FMRP is an RNA-binding protein that is involved in the translational regulation of several neuronal mRNAs. However, the precise mechanism of translational inhibition by FMRP is unknown. Here, we show that FMRP inhibits translation by binding directly to the L5 protein on the 80S ribosome. Furthermore, cryoelectron microscopic reconstruction of the 80S ribosome-FMRP complex shows that FMRP binds within the intersubunit space of the ribosome such that it would preclude the binding of tRNA and translation elongation factors on the ribosome. These findings suggest that FMRP inhibits translation by blocking the essential components of the translational machinery from binding to the ribosome.

INTRODUCTION

Fragile X syndrome (FXS) is a neurodevelopmental disorder caused by the loss of function of a single gene, the fragile X mental retardation 1 gene (FMR1) (Pieretti et al., 1991; Siomi et al., 1993; Verkerk et al., 1991). FXS is typically caused by a triplet repeat expansion in the 5′ UTR of the FMR1 gene, leading to abnormal methylation of the gene and the repression of transcription (Penagarikano et al., 2007; Pieretti et al., 1991; Sutcliffe et al., 1992; Verkerk et al., 1991). The absence of FMR1 gene expression results in intellectual disability and behavioral problems and is the leading cause for inherited mental retardation, with an average prevalence of ~1:2,500 in males and ~1:5,000 in females (Hagerman, 2008; Penagarikano et al., 2007). The altered expression of the FMR1 gene has also been linked to autism spectrum disorders, fragile-X-associated tremor/ataxia syndrome, and fragile-X-associated primary ovarian insufficiency (Kenneson and Warren, 2001; Penagarikano et al., 2007).
Although previous studies suggested that FMRP inhibits translation by binding to either a G-quadruplex- (Brown et al., 2001; Darnell et al., 2001; Schaeffer et al., 2001) or a pseudo-knot-forming (Darnell et al., 2005) sequence in mRNA, none of the FMRP binding sites identified in this study can be folded into a G-quadruplex or pseudo-knot structure (Darnell et al., 2011). A more recent study indicated that the KH2 and KH1 domains of FMRP bind to frequently occurring ACUK and WGGA sequences (Ascano et al., 2012). How-

In mammals there are two autosomal paralogs of FMRP, FXR1P and FXR2P, which are also expressed in the brain (Agulhon et al., 1999; Wan et al., 2000). In contrast, Drosophila contains only one Fmr1 gene whose expression product shares 56% overall amino acid similarity with mamma-

In Figure 1, inhibition of translation by FMRP is shown in (A) domain organization of dFMRP (1–681 amino acids) and NT-dFMRP (220–681 amino acids), NLS, nuclear localization signal; KH, K-homology domain; NES, nuclear export signal; RGG, motif rich in arginine and glycine.

(B) Time course of luciferase mRNA translation. Red trace, control translation without NT-dFMRP; green trace, translation with 1.2 μM BSA; cyan trace, translation with 1.2 μM RNA-binding MS2 coat protein; blue trace, translation with 0.6 μM NT-dFMRP. The addition of NT-dFMRP to the IVTS inhibited luciferase mRNA translation. In contrast, the addition of BSA or MS2 coat protein to the IVTS did not inhibit the synthesis of luciferase.

(C) Inhibition of translation by NT-dFMRP mutants. Time course of luciferase mRNA translation in the presence of the indicated mutant NT-dFMRP proteins.

(D) Inhibition of translation by FMRP is independent of WGGA and ACUK sequences. Red trace, control mRNA; green trace, mRNA without WGGA sequence; blue trace, mRNA without ACUK sequence; orange trace, mRNA without both WGGA and ACUK sequences. In all cases, the data were normalized with respect to the control translation without NT-dFMRP. The bar graphs next to each time course show the mean ± SD from three independent experiments.

(E) Inhibition of translation by FMRP in cells. Translation of control luciferase mRNA (red bars) and luciferase mRNA without WGGA and ACUK sequences (orange bars) are inhibited to a similar extent by full-length dFMRP and NT-dFMRP, as indicated. Data were normalized with respect to control cells, which were co-transfected with an empty plasmid and the appropriate luciferase plasmid. The transfection experiments were performed in duplicates, and the mean ± SD from three independent transfection experiments is shown.

(F) Inhibition of translation by FMRP is independent of G-quadruplex and pseudo-knot-forming sequences in mRNA. Red trace, control mRNA; blue trace, mRNA with a KC2 pseudo-knot-forming sequence; green trace, mRNA with SC1 G-quadruplex sequence. The bar graph shows the mean ± SD from three independent experiments.

See also Figures S1, S2, S3, and S4.
Mechanism of Translational Inhibition by FMRP

(Comery et al., 1997; Greenough et al., 2001; Hinton et al., 1991; Lu et al., 2004; Nimchinsky et al., 2001; Rudelli et al., 1985; Zang et al., 2009; Zhang et al., 2001, 2004). Specifically, Fmr1 gene knockout flies display increased growth and branching of dendritic processes as observed in patients with FXS (Zhang et al., 2001). Furthermore, the neurological and behavioral defects of Fmr1 gene knockout flies can be fully rescued by the human FMR1 gene, demonstrating the relevance of using Drosophila to study FXS (Coffee et al., 2010, 2012). The availability of sophisticated genetic, cellular, and molecular tools makes Drosophila an attractive model system to study the function of FMRP. Here, we analyzed the mechanism of translational inhibition by the Drosophila FMRP (dFMRP). Our biochemical experiments and structural studies show that dFMRP binds to the 80S ribosome near the binding site for tRNA and translation factors. These results suggest that FMRP would inhibit translation by interfering with the binding of essential translation factors to the ribosome.

RESULTS AND DISCUSSION

Inhibition of Translation by FMRP

To understand the mechanism of translational inhibition by FMRP, we used the Drosophila FMRP (dFMRP) homolog, in which the RNA-binding domains are nearly 75% identical to human FMRP (Wan et al., 2000) (Figure S1A). We purified both the full-length and an N-terminally truncated dFMRP (NT-dFMRP) and used an in vitro translation system (IVTS) made from Drosophila embryo extract to test the activity of dFMRP (Gebauer and Hentze, 2007) (Figure S2). We used Renilla luciferase mRNA as the reporter for protein synthesis because it has three G-rich sequences that potentially form G-quadruplex structures (Kikin et al., 2006) and additionally has seven ACUK and six WGGA sequences (Figures S1B and S1C). The time course of protein synthesis was monitored by bioluminescence. The addition of dFMRP or NT-dFMRP to the IVTS inhibited the synthesis of luciferase (Figure 1B and S2). We used NT-dFMRP in our further studies because it is equally active in inhibiting translation as the full-length protein and easier to purify than full-length dFMRP (see the Experimental Procedures).

Titration experiments show that the inhibition of translation depends on the concentration of NT-dFMRP added to the IVTS (Figure S3A). NT-dFMRP also inhibited the translation of luciferase mRNAs that do not have a N7-methyl guanosine cap at the 5′ end or a 3′ poly(A) tail, indicating that translation inhibition is 5′ cap and poly(A) tail independent (Figures S3B and S3C). To confirm that the inhibition of translation by NT-dFMRP is 5′ cap independent, we synthesized uncapped luciferase mRNA with an internal ribosome entry site (IRES) from Reaper mRNA at the 5′ end (Hernández et al., 2004). IRES-dependent translation of luciferase mRNA was as efficient as the translation with the 5′-capped mRNA (Figure S3D). NT-dFMRP inhibited the translation of luciferase mRNA that has the IRES element, confirming that the 5′ cap is not essential for inhibition (Figure S3E). These results also suggest that FMRP does not affect the initiation step of protein synthesis.

We next investigated the importance of the different RNA binding domains of dFMRP in suppressing translation. We made constructs with a missense mutation in the KH1 (Ile244Asn) or KH2 (Ile307Asn) domains or with the RGG domain deleted (residues 414 to 681) (Sioni et al., 1994) (Figure S4). Circular dichroism spectroscopy indicated that the mutations or the deletion did not change the overall structure of the mutant proteins (Figures S4C and S4D). In agreement with an earlier study (Wan et al., 2000), the KH1 mutant was less active than the KH2 mutant and wild-type NT-dFMRP in inhibiting translation (Figure 1C). Interestingly, the ∆RGG mutant inhibited translation poorly, suggesting that this region is also important for the function of NT-dFMRP (Figure 1C).

WGGA and ACUK Sequences in mRNA Are Not Important for Translational Inhibition by FMRP

A recent study shows that the KH1 domain of FMRP binds to mRNA that has the sequence ACUK (in which W = A or U and K = G or U) (Ascano et al., 2012). To determine whether the six WGGA and seven ACUK sequences in luciferase mRNA are essential for translational inhibition by FMRP, we systematically replaced them with other sequences but without changing the primary amino acid sequence of the luciferase protein. We made three different mutant luciferase mRNAs: (1) without any WGGA sequence (ΔWGGA mRNA), (2) without any ACUK sequence (ΔACUK mRNA), and (3) without both WGGA and ACUK sequences (ΔWGGA/ΔACUK). Surprisingly, NT-dFMRP inhibited the translation of ΔWGGA mRNA, ΔACUK mRNA, and ΔWGGA/ΔACUK mRNA to a similar extent as control luciferase mRNA (Figure 1D). These results suggest that the WGGA and ACUK sequences in mRNA are not critical for translational inhibition by FMRP. We verified these results by carrying out in vivo studies. HEK293T cells were cotransfected with plasmids expressing dFMRP or NT-dFMRP and either control luciferase mRNA or ΔWGGA/ΔACUK mRNA. The amount of dFMRP and NT-dFMRP expressed in the cells was determined by western blotting, and the amount of luciferase expressed in the cells was determined by bioluminescence. Consistent with the in vitro data, full-length dFMRP and NT-dFMRP inhibited the translation of control luciferase mRNA and ΔWGGA/ΔACUK mRNA to a similar extent, indicating that these sequences in mRNA are not essential for translational inhibition by FMRP (Figure 1E). However, we cannot rule out the possibility that mRNAs with WGGA and ACUK sequences are preferentially inhibited by endogenous concentrations of FMRP.

Functional Role for G-Quadruplex Sequences in mRNA

Previous studies show that FMRP inhibits the translation of specific mRNAs, such as futsch (MAP1B), Rac1, Fmr1, and Chickadee/Profilin, by binding to G-rich sequences, which may fold into a G-quadruplex (Coffee et al., 2010; Lee et al., 2003; Schaeffer et al., 2001; Zhang et al., 2001). Therefore, it is likely that FMRP inhibits the translation of Renilla luciferase mRNA by binding to the three putative G-quadruplex-forming sequences. However, it is impossible to remove the G-quadruplex-forming sequences from Renilla luciferase mRNA without changing the primary amino acid sequence of the protein. Therefore, we tested whether inserting the well-characterized SC1 G-quadruplex- (Darnell et al., 2001) or the ∆KC2
FRET-based assay using the fluorescent dyes Cy3 (donor) and Cy5 (acceptor) (Figure 3A). Cy3 and Cy5 dyes form an efficient FRET donor-acceptor pair, and energy transfer can only occur within distances of 1–100 Å. We attached the fluorescent dye Cy5 to the single cysteine at position 263 in dFMRP. To label the purified ribosome, we used a reactive Cy3 dye that reacts with all the exposed amino groups in the ribosomal proteins. The Cy5-labeled NT-dFMRP was incubated with the Cy3-labeled ribosome to form the FMRP-ribosome complex. The sample containing both Cy3-labeled ribosome and Cy5-labeled NT-dFMRP shows a decrease in the Cy3 fluorescence emission (near 575 nm) and an increase in the Cy5 fluorescence emission (near 665 nm) compared to the two controls (Figure 3B). This result also suggests that the NT-dFMRP binds to the 80S ribosome. The increase in FRET efficiency due to NT-dFMRP binding to the ribosome was used to measure the equilibrium dissociation constant (K_D). The K_D for NT-dFMRP is 20 ± 3 nM, showing that it binds with high affinity to the ribosome (Figure 3C). We also analyzed the KH1, KH2, and ΔRGG mutants using this quantitative FRET-based binding assay. Our results show that the K_D for the KH1 and KH2 mutants are 130 ± 5 nM and 61 ± 2 nM, respectively (Figures 3D and 3E). In contrast, the ΔRGG mutant bound poorly to the ribosome with a K_D that is >2 µM (Figure 3F). These results also correlate well with our in vitro translational inhibition studies with the individual KH domains indicating that the KH domain is important for translational inhibition by NT-dFMRP.

FMRP Binds Directly to the Ribosome

Previous studies have suggested that FMRP associates directly with the ribosome (Ishizuka et al., 2002; Khramidjan et al., 1996; Mazroui et al., 2003; Siorri et al., 1996). However, other reports show that FMRP binds to the ribosome via mRNA or as an mRNA-RNP complex (Corbin et al., 1997; Darnell et al., 2011; Feng et al., 1997b; Li et al., 2001; Mazroui et al., 2002; Tamanini et al., 1996). It is not clear whether mRNA or other components are required for the association of FMRP with the ribosome. We used gel filtration chromatography and SDS-PAGE to show that NT-dFMRP could indeed bind directly to the ribosome in the absence of mRNA (Figure 2A, lanes 3 and 4). Furthermore, the binding of NT-dFMRP to the ribosome is stoichiometric even though an excess amount of NT-dFMRP was present in the binding reaction. We next tested the binding of NT-dFMRP with functionally relevant mutations in the KH1 (I244N) or KH2 (I307N) domains. The KH1 mutant showed a 2-fold reduced binding to the 80S ribosome, whereas the KH2 mutant bound to a similar extent as NT-dFMRP (Figures 2B and 2C). The binding results are consistent with our functional data, which show that the KH1 domain is important for translational inhibition by NT-dFMRP.

FMRP Binds with High Affinity to the Ribosome

To determine the binding affinity of FMRP for the ribosome, we developed a fluorescence resonance energy transfer (FRET)-based assay using the fluorescent dyes Cy3 (donor) and Cy5 (acceptor) (Figure 3A). Cy3 and Cy5 dyes form an efficient FRET donor-acceptor pair, and energy transfer can only occur within distances of 1–100 Å. We attached the fluorescent dye Cy5 to the single cysteine at position 263 in dFMRP. To label the purified ribosome, we used a reactive Cy3 dye that reacts with all the exposed amino groups in the ribosomal proteins. The Cy5-labeled NT-dFMRP was incubated with the Cy3-labeled ribosome to form the FMRP-ribosome complex. The sample containing both Cy3-labeled ribosome and Cy5-labeled NT-dFMRP shows a decrease in the Cy3 fluorescence emission (near 575 nm) and an increase in the Cy5 fluorescence emission (near 665 nm) compared to the two controls (Figure 3B). This result also suggests that the NT-dFMRP binds to the 80S ribosome. The increase in FRET efficiency due to NT-dFMRP binding to the ribosome was used to measure the equilibrium dissociation constant (K_D). The K_D for NT-dFMRP is 20 ± 3 nM, showing that it binds with high affinity to the ribosome (Figure 3C). We also analyzed the KH1, KH2, and ΔRGG mutants using this quantitative FRET-based binding assay. Our results show that the K_D for the KH1 and KH2 mutants are 130 ± 5 nM and 61 ± 2 nM, respectively (Figures 3D and 3E). In contrast, the ΔRGG mutant bound poorly to the ribosome with a K_D that is >2 µM (Figure 3F). These results also correlate well with our in vitro translation assays, suggesting that the ΔRGG mutant was defective and the KH1 mutant was slightly defective in inhibiting translation compared to the KH2 mutant and the wild-type NT-dFMRP (Figure 1C). Previous studies with the individual KH domains indicate that the I244N mutation in the KH1 domain of the human FMRP would unfold the protein (Musco et al., 1997), whereas I307N mutation in the KH2 domain of *Drosophila* FMRP would adopt a native fold (Pozdnyakova and Regan, 2005). These findings may explain why the KH1 (I244N) mutant binds with lower affinity to the ribosome compared to the KH2 (I307N) mutant in our experiments, which in turn confirm that NT-dFMRP can bind directly to the ribosome without mRNA.

FMRP Binds Close to Ribosomal Protein L5 on the Ribosome

To map the binding site of NT-dFMRP on the ribosome, we used both the chemical crosslinking approach and the structural approach. We used sulfosuccinimidyl-4- (N-maleimidomethyl)
cyclohexane-1-carboxylate (SMCC) to crosslink the ribosome-bound NT-dFMRP and observed an 80 KD band in the SDS-PAGE analysis, while the amount of NT-dFMRP band was decreased (Figure 4A, lane 4 and labeled XL). Purification of the crosslinked product with the anti-dFMRP 5B6 monoclonal antibody and mass spectrometry analysis indicate that the 80 KD band consists of FMRP and the large 60S ribosomal subunit protein L5 (previously called L11 in yeast and human ribosomes, but see Jenner et al., 2012 for more unified nomenclature for the ribosomal proteins). In addition, the mass spectrometry data show that a peptide fragment from the N-terminal end of NT-dFMRP is crosslinked to L5, which provides important constraint for the arrangement of NT-dFMRP on the ribosome.

Cryo-EM Structure of FMRP-Ribosome Complex

We obtained a cryo-EM map of the *Drosophila* 80S ribosome-NT-dFMRP complex to determine the three-dimensional (3D) binding position of NT-dFMRP on the ribosome. Subtraction of the 3D map of the control *Drosophila* 80S ribosome from that of the 80S ribosome-NT-dFMRP complex shows an elongated mass of density, within the ribosomal intersubunit space, that spans from central protuberance (CP) to the α-sarcin/ricin stem-loop (SRL) region of the 60S subunit (Figure 4B). One end of the elongated difference mass interacts with the CP and A-site finger (ASF) of the 60S subunit, whereas its other end is situated between the protein S12 region of the small (40S) subunit and SRL region of the 60S subunit. Based on our crosslinking data, which suggests that the N terminus of the NT-dFMRP construct interacts with the CP protein L5, we assign that portion of the difference map to the N terminus and tentatively assign the portion between S12 and SRL to the C terminus domain of FMRP (Figures 4B–4D). Both our crosslinking and cryo-EM results agree with a previous tandem affinity purification analysis of dFMRP from a cytoplasmic lysate, showing that FMRP could interact with ribosomal proteins L5 and L18 (Ishizuka et al., 2002), both located in the CP of the 60S subunit (Ben-Shem et al., 2011). Indeed, we observe a direct interaction of...
NT-dFMRP with protein L5. The previous interaction reported with protein L18 could involve the N terminus of the full-length FMRP that was absent in our construct. Docking of an I-TASSER (Zhang, 2008) homology model of NT-dFMRP into the corresponding cryo-EM map density tentatively places its KH1 and KH2 domains interacting with the CP and ASF, respectively, of the 60S subunit (Figures 4C and 4D). This region of the 60S subunit would normally be occupied by a tRNA in the peptidyl site (P site) during protein synthesis. Superimposition of the ribosome-bound FMRP and previously known binding position of the tRNA at the ribosomal P site indicate that the KH1 and KH2 domains of FMRP would partially overlap with the anticodon arm of the tRNA (Figure S7). However, future structural studies with a translationally inhibited ribosome-FMRP complex carrying a tRNA in the P site will be essential to understand if and how both the P-site tRNA and FMRP is accommodated simultaneously on the ribosome.

Model for Translational Inhibition by FMRP
The cryo-EM structure suggests that the N-terminal KH1 and KH2 domains of FMRP bind to the ribosome, whereas the C-terminal RGG domain, which lies closer to the A-site in the small ribosomal subunit, may interact with mRNA. Interaction of the RGG domain of FMRP with G-quadruplex sequences in mRNA may explain the selective translational inhibition of specific mRNA targets (Coffee et al., 2010; Lee et al., 2003; Schaeffer et al., 2001; Zhang et al., 2001) and is consistent with our results that the 6RGG mutant inhibits translation poorly. Therefore, as depicted in Figure 5, the interactions of FMRP, both with the ribosome and mRNA, may be important for synergistically inhibiting translation. The binding position of NT-dFMRP on the 80S ribosome suggests that FMRP would directly block the binding of several translation factors and tRNA that are known to bind to the overlapping regions on the ribosome (Agrawal et al., 2000) and thereby inhibit protein synthesis. Indeed, a recent study shows that FMRP reversibly stalls 80S ribosomes bound to target mRNAs at the elongation stage of protein synthesis (Darnell et al., 2011). Additionally, the FMRP-stalled 80S ribosomes appear to form larger complexes consisting of multiple 80S ribosomes bound to target mRNA (Darnell et al., 2011). These previous results, taken together with our structural data, suggest that FMRP would block the binding of eEF1A-GTP-aa-tRNA.
Mechanism of Translational Inhibition by FMRP

Ribosome Purification

Dechlorinated frozen fly embryos were lysed with the Dounce homogenizer and clarified by centrifugation. Supernatant was applied to to 30% sucrose cushion in 50 mM Tris-HCl (pH 7.5), 10 mM MgCl₂, 100 mM KCl, 0.5 mM EDTA, 0.5 mM PMSF, 0.1 mM benzamidine, and 5 mM 2-mercaptoethanol and spun at 39,000 revolutions per minute (RPM) for 17 hr at 4 °C. Crude ribosome pellets were resuspended in 50 mM Tris-HCl (pH 7.5), 10 mM MgCl₂, 500 mM KCl, 0.5 mM PMSF, 0.1 mM benzamidine, and 5 mM 2-mercaptoethanol and spun at 13,000 RPM for 20 min at 4 °C. Purumycin was added to the supernatant at a ratio of 1 mg puromycin per 100 mg of ribosomes and incubated 30 min on ice and for 15 min at 37 °C. Solution was clarified by centrifugation for 20 min at 13,000 RPM. Supernatant was then loaded on 10%–40% sucrose density gradients in a SW-28 rotor and spun at 20,000 rpm for 17 hr and 30 min. Gradients were fractionated using a gradient fractionator and UA-6 detector (ISCO/BRANDELL). 80S ribosome peaks were pooled and diluted 2-fold with 50 mM Tris-HCl (pH 7.5), 10 mM MgCl₂, 25 mM KCl, and 5 mM 2-mercaptoethanol and spun at 35,000 RPM for 1 hr. Purified ribosome pellets were resuspended in 10 mM HEPES (pH 7), 10 mM MgCl₂, 50 mM KCl, and 5 mM 2-mercaptoethanol and stored at −80 °C. Ribosome concentration was calculated using 1 A280 unit = 20 pmol/μl 80S ribosome.

In Vitro Translation Assay

Renilla luciferase reporter mRNA constructs were capped and/or polyadenylated using the T7 mScript Standard mRNA Production System (CellScript). SC1 and ΔKC2 sequences were subcloned into the 3′ UTR of luciferase mRNA. Reuter IRES (168 nucleotides) was inserted into the 5′ UTR of luciferase mRNA. In vitro translation assays were conducted with Drosophila embryo extract, as described previously (Gebauer and Hentze, 2007). Coelentarazine (3 μM final concentration) was added to monitor the time course of luciferase synthesis using a 96-well plate reader (Genios, Tecan). Data were normalized with respect to the highest signal for each mRNA in the absence of NT-dFMRP.

In Vivo Translation Assay

Transient transfection of HEK293 cells was performed with either the control empty vector or plasmids encoding the full-length Flag-dFMRP or Flag-NT-dFMRP, together with plasmids encoding the wild-type Flag-Renilla luciferase or mutant Flag-Renilla luciferase (without any WGGA or ACUK sequences). The amount DNA used for transient transfection was 2.5 μg of control empty vector, full-length Flag-dFMRP, or Flag-NT-dFMRP and 5 μg of wild-type Flag-Renilla luciferase or mutant Flag-Renilla luciferase. Transient transfection was performed with Lipofectamine 2000 (Invitrogen) in accordance with the manufacturer’s protocol. Cells were collected 48 hr after transfection and lysed using Passive Lysis Buffer (Promega). Coelentarazine (3 μM final concentration) was added to the cell extracts, and the amount of bioluminescence produced was measured using a 96-well plate reader (Genios, Tecan). Data were normalized with respect to the signal obtained with the control empty vector for each luciferase mRNA. All experiments were performed in duplicates, and the mean ± SD from three independent experiments is reported.

Expression and Purification of NT-dFMRP and Mutant Proteins

The Drosophila Fmr1 gene (GenBank ID code AF305881) was obtained from Prof. Gideon Dreyfuss (University of Pennsylvania). Full-length dFMRP and the N-terminal truncated dFMRP (NT-dFMRP) spanning residues 220 to 681 were subcloned into pTYB1 (New England Biolabs) to produce a fusion protein with a C-terminal intein and chin binding domain. I244N and I307N NT-dFMRP constructs were then made by QikChange Site-Directed Mutagenesis (Stratagene). A ΔRGG construct spanning residues 220 to 413 was also subcloned into pTYB1. Proteins were expressed in Escherichia coli Rosetta (DE3) strain and purified using the chin affinity matrix, as recommended by the manufacturer (New England Biolabs). The protein was stored in 24 mM HEPES (pH 7.5), 250 mM NaCl, 15% glycerol, and 2 mM DTT at −80 °C. Protein purity was assessed by Coomassie-blue-stained SDS-PAGE, and concentrations were estimated by Bradford assay.

Expression of dFMRP in E. coli resulted in about 50% of the protein becoming truncated by ~20 K0 from the N terminus (Figure S2A). Using an N-terminal hexahistidine tag, we were able to purify limited amounts of the full-length dFMRP (Figure S2A). We also separately expressed and purified an N-terminally truncated dFMRP (NT-dFMRP) that is missing the NLS and residues important for FMRP/FXR dimer formation (Figure S1A). The yield of NT-dFMRP was much higher than the full-length dFMRP.
and 5 mM 2-mercaptoethanol and then labeled with Cy3 mono-reactive dye (GE Healthcare) for 45 min at room temperature. Unreacted fluorophores were removed with gel filtration columns (Bio-spin 6, Bio-Rad), and buffer was exchanged to 10 mM HEPES (pH 7), 10 mM MgCl₂, 50 mM KCl, and 5 mM 2-mercaptoethanol.

FRET Assay and K₀ Determination

Cy3-ribosome (2 nM) was titrated with Cy5-NT-dFMRP (0–125 nM) or Cy5-NT-dFMRP mutants (0–400 nM) in binding buffer with excitation at 530 nm. Emission was recorded for the donor Cy3-ribosome and the acceptor Cy5-NT-dFMRP or Cy5-NT-dFMRP mutants, and each buffer emission spectrum was subtracted from the corresponding fluorescence emission spectrum. FRET efficiency (%) was then calculated by the equation: lg(Io/Ic)(100). Io stands for the intensity of donor at 575 nm, and Ic stands for the intensity of acceptor at 665 nm. FRET efficiency was then fitted to a quadratic equation using GraphPad Prism to obtain the K₀ values.

Crosslinking and Immunoprecipitation

NT-dFMRP-ribosome complexes (1 μM) were formed in 1× PBS (100 mM sodium phosphate, 150 mM NaCl [pH 7.2]). Freshly prepared sulfo succinimidyl-4-(N-maleimidomethyl)cyclohexane-1-carboxylic (Sulfo-SMCC) at 30 μM final concentration was added to the complexes, incubated for 40 min at 4°C, and then analyzed on 10% SDS-PAGE. For immunoprecipitation, monoclonal anti-dFMRP SB6 (Developmental Studies Hybridoma Bank) was added to the crosslinked reactions and incubated for 1 hr at 4°C. Antibodies were captured by adding 25 μl of Protein G Magnetic Beads (New England Biolabs) and gently agitating the reactions for 1 hr at 4°C. Beads were washed extensively and resuspended in 5X SDS sample loading buffer and analyzed on a 10% SDS-PAGE stained with Coomassie brilliant blue. Crosslinked protein bands were then cut out, digested with trypsin, and analyzed by liquid chromatography-tandem mass spectrometry using electro-spray ionization. Peptide identifications were made using paragon algorithm executed in ProteinPilot (v. 2.0) (Life Technologies).

Cryo-Electron Microscopy, Image Processing, and Three-Dimensional Reconstruction

The 80S-NT-dFMRP complex was prepared under the ribosome binding assay conditions described above, except that RNA was excluded from the reaction mixture. The complex was diluted to 35 nM in the same binding buffer but contained 25-fold molar excess of NT-dFMRP. Cryo-EM grids were prepared in accordance with standard procedures (Grassucci et al., 2007), using Vitrobot (FEI). Data were collected on a Philips FEI Tecnai F20 field emission electron gun electron microscope with a magnification of 50,760. A total of 102 micrographs for the control 80S and 96 micrographs for the 80S-NT-dFMRP complex were scanned on a Zeiss field flattened scanner (Z1 Imaging) with a step size of 14 Å, corresponding to 2.78 Å on the object scale and were sorted into 28 and 20 defocus groups for the 80S and the 80S-NT-dFMRP complex, respectively. A total of 78,267 images for the control and 82,481 images for the 80S-NT-dFMRP complex were manually selected. SPIDER (Frank et al., 1995) was used for all image processing, including two-dimensional image classification and three-dimensional reconstruction and refinement (Shahik et al., 2008). A previously determined cryo-EM structure of the yeast 80S ribosome (Verschoor et al., 1998) was used as the reference to align images for a final reconstruction from fewer images, using projection-matching procedure (Penczek et al., 1994). The 3D volume so obtained was low-pass filtered and obtained the N terminus domain (amino acid residues 1–60 of the construct, containing the KH1 motif) to the portion of density closest to the CP of the 80S ribosome. We next fitted the subsequent structural domain (amino acid residues 61–168, containing the KH2 motif), followed by the third structural domain (amino acid residues 169–260, containing first three RGG motifs), and then finally the fourth structural domain (amino acid residues 261–466, containing the remaining two RGG motifs). These independent fittings tentatively place the KH1 motif close to protein LS and the 28S rRNA helix 84 within the CP of the ribosome, and KH2 motif close to the 28S rRNA helix 38, also known as the A-site finger. The overall features and placements of all four domains match and explain most of the cryo-EM density corresponding to NT-dFMRP. However, the cryo-EM density corresponding to structural domains 3 and 4 are relatively weak, suggesting that the RGG motif containing domains and the C terminus of FMRP are relatively flexible on the ribosome (Figure S6). All modeling, fitting, and visualization were performed using Chimera software (Pettersen et al., 2004).

ACKNOWLEDGMENTS

We are grateful to Prof. Gideon Dreyfuss for providing the plasmid encoding Drosophila FMRP and Prof. James Kadonaga for providing Drosophila embryos. We thank Timothy Booth for some of the cryo-EM data collection and his help with image processing, Prem Kaushal for help with image processing, and Yidan Li for help with the transection experiments. We also thank Jing Wang, Uli Muller, Jamie Cate, and Gourisankar Ghosh for useful comments on the manuscript. This work was supported by a NIH Molecular Biophysics Training Grant (GM08326) (to E.C.) and grants from the NIH (R01 GM065265 to S.J.; R01 GM065265 to S.J., R01 GM065176 to R.K.A.).

Accepted: March 10, 2014
Published: April 17, 2014

REFERENCES

